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Dissipative transport with correlated noise
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The driven-diffusion equation, proposed by Hwa and Kardar [Phys. Rev. Lett. 62, 1813 (1989)] as a
model for running sandpiles, is studied in the presence of power-correlated noise by means of the dynam-
ical renormalization group, obtaining nonperturbative exponents. A ‘“‘turbulent” regime with positive
roughening exponent y is obtained, including the Kolmogorov case y = %
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INTRODUCTION

Nonequilibrium stationary states occur in various
physical contexts such as, e.g., transport processes [1-3]
and growth phenomena [4]; their fluctuations have been
extensively studied in recent years by means of scaling ar-
guments, numerical simulations, and the dynamical re-
normalization group (DRG) (see, e.g., Ref. [5] and quota-
tions therein). In this context, Hwa and Kardar [2] con-
sidered a noisy driven-diffusion equation as a model for
running sandpiles. The driven-diffusion equation is an
anisotropic extension to higher dimensions of the Burgers
equation; while in the Burgers equation the field
represents the velocity of the fluid, Hwa and Kardar in-
terpreted the (one component) field as the profile of the
sandpile. This interpretation is still controversial, but it
turns out that the driven-diffusion equation correctly de-
scribes the density in the transport of granular materials
as well as in traffic flow. The DRG treatment of Hwa
and Kardar with 8-correlated noise gives a negative
roughening exponent Y (corresponding to an asymptoti-
cally flat surface), with the exception of the one-
dimensional case, where y =0.

In this paper, we reexamine the driven-diffusion equa-
tion both in the deterministic and in the stochastic case.
In the deterministic case, one finds a strong coupling re-
gime, which is the analog of the Kolmogorov solution [6]
of the Navier-Stokes equation, with a roughening ex-
ponent Y =1, independent of the dimensions. This con-
tradicts the DRG result of Hwa and Kardar and raises
the question whether the system is driven by the non-
linearity in spite of the noise. More properly, one needs
to understand to what extent the strong coupling regime
is influenced by the external forcing. Here we make a
step along this line of reasoning and examine the effect of
a forcing with long range correlation in space. The ob-
tained infrared fixed point is characterized by exponents
that depend on the nature of the noise. The roughening
exponent can in fact assume positive values, including the
Kolmogorov scaling, for a suitable choice of the noise. In
the deterministic case, one makes use of the scale invari-
ance of the energy transfer process, thus obtaining a
uniquely defined set of exponents; in the DRG treatment,
this invariance does not explicitly come into play and as a
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consequence one determines a range of exponents. We
finally compare our results with previous work on
sandslide cellular automata [7].

DETAILED CONSERVATION
AND KOLMOGOROYV SCALING

The driven-diffusion equation for the field h(x",x i)
reads

8,h=v@h+v (V. Ph— S+, M

where =m(x,x,,?) is the noise amplitude. Notice that
anisotropy is assumed in the nonlinear term involving the
derivative in the transport direction x;, and in the
diffusion constants v|,v,. We represent with (V,)* the
Laplacian operator in the (d —1) transverse directions x,.
The field A (x",x 1»t) describes the deviation of the surface
of the sandpile from a flat incline; the role of the quadra-
tic nonlinearity in this physical context is extensively il-
lustrated in Ref. [2]. A discussion of the most general
equation associated with the transport of a scalar quanti-
ty can be found, e.g., in Ref. [8]. The noise term is
defined by its correlators:

n(k,0)= [d [dte " **on(x,1)
(n(k,0))=0, ()
(9(k,0)n(k’,0')) =Dy(k,0)8(k+k" )80+ )(2m)¢ 1.

We first examine Eq. (1) in the deterministic (D, =0)
case. One defines the correlation function C(x,t;x’,t’)
=(h(x,t)h(x',t')), where the average is made with
respect to initial conditions. If translation invariance in
space holds, C satisfies the equation

(3, +2vjk? +2v,k})C(Kk,1)

_ (4P 9% 5ot a)Skp.a)
f(zﬂ)df(zﬂ)d p+a)S(k,p,q) ,

C(k,t)=C(k;t,t) , (3)
S(k,p,q)=—Ak,Im{h(k,0h(p,Dh(q,1)) ,

Im(x) being the imaginary part of x. One immediately
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verifies the detailed conservation

S(k,Paq)+S(P,q,k)+S(Q»knP)=o ’ (kll +p||+q"=0) :

As a consequence, upon integrating over the k variable,
one obtains the total conservation law,

3, [d%kC(k,0)+ [d%k(2vk}+2vkDC(k,1)=0, @)

which exhibits the conservative nature of the nonlinear
term. It is then natural to define an “energy density”

I

+
a,H(k",t)+2v"kﬁH(k",t)+2vlf

T(ky,t)=

where S, is the surface area of the d-dimensional unit
sphere. The nonlinearity drives the excitation towards
higher momenta, indeed in the inertial regime the veloci-
ty is proportional to the field amplitude [see Eq 1]
Hence the engrgy flux through momentum k| is given by
(k))=— f dk|T(k;), where the conservation law
f (')" “dk’'T( ko) =0 has been used. In the inertial regime,
a scale-invariant energy flux II(k ) is compatible with Eq.
(5). In fact, if a constant energy flux € [9] is injected at
momentum (k);, at steady state one has
T(k))+ed(k,—(k;);)=0, (5"

which implies II(k,)=e€ (k,>(k;);). By dimensional
analysis, one fines the Kolmogorov spectrum

H(k)~7k 37, ky>(k); - 6)

Naive scaling in terms of the roughening exponent x and
of the dynamical exponent z (h ~x” ,t ~x|| ) leads to the
same conclusion (y=1, z=%) if one assumes two scale

invariances: (i) the scale invariance of the equation in the .

inertial regime, implying y+z=1; (ii) the scale invari-
ance of the energy transfer, implying z =2y.
This stationary regime describes a cascade toward
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H(t)=1 [[d%/2m)?]1C(k,t)=1(h¥x,t)). In the iner-
tial reglme, where v;=v,=0, we have d/dtH (t)=

In order to discuss the behavior in the transport direc-
tion, we average over the transverse directions by
defining the spectral density H(k ,?):

+ o + o0 + oo
HO= [ "“akyHky,0= [ " "dky [ " dk Hikp ko)

which satisfies the equation

“dk k3H (k) k,,0)=T(k,1)

(5)

)df“"dkl Zf(z )df(z 78k +pta)skp.a),

[

higher momenta up to the point at which viscosity starts
competing with the nonlinear term. We stress that the
DRG result of Hwa and Kardar fails in recovering this
“turbulent” behavior; in particular, the roughening ex-
ponent Y is always negative or at the most equal to zero
in one dimension.

RENORMALIZATION GROUP RESULTS
WITH POWER NOISE

We reexamine the DRG analysis by assuming a noise
with long range correlation in space. As long as the non-
linearity involves the single component k;, singular
behavior is expected in the direction of transport. It is
then natural to assume an anisotropic noise. Power-
correlated noise has been considered for the Navier-
Stokes equation by De Dominicis and Martin [10] and by
Yakhot and Orszag [11]. We have

Do(k,a))=2D0|k”’—y N

where y is arbitrary. The basic formalism introduced
here essentially follows the lines of various previous pa-
pers (in particular, Refs. [2], [11], [12], and [13]) so that
we will merely give the results. In terms of the unper-
turbed propagator G,(k,w), Eq. (1) has the form

h(k,0)= —i;k,lao(k ) [ 2 o )df—/ih(q,p)h(k q,0—p)+Go(k,0)n(k,0)

Golk,0)=(—io+vki+vk}) ™

M

We study the hydrodynamic regime k,0—0. No divergencies are generated by » and q, integrations, which are per-

formed over (—o,+ ) and (0,A)).

The renormalized functions G'® and D'®)| valid for small momenta

kS (k£ <e™'A)), are obtained by integrating over large g7 (e7'A;<q; <A)). We represent in Fig. 1 the exact propa-
gator G, defined by h(k,0)=G(k,w)n(k,»), and the exact noise correlation function 2 defined by

(h(k,0)h(K',0'))=G(k,0)G(K', 0" )D(k,w)d(k+k')8(0+w')2m)¢ T .
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(a) d'V”(l) _ =2
. = <+ 4 /o\ 4 T—-V”(l)[Z‘Z"f‘AdK ni,
dv ()
(b) a1 iz =21,
—p—— - v ot D 4o (1
N dD(l) _
—JI-__D(I)[3Z+(d —1)+y+1—2w],
FIG. 1. (a) Equation for the field 4 applied to a source 7. dxi _ 7—d _
The double arrow represents the exact propagator G, the single T =1+Mz) |e— > AN |,
arrow represents the bare propagator G,, the open circle
represents the zeroth order average over the noise source, and with a nontrivial stable fixed point A*=[2e/

the black dot —(A/20k) [dq/
(2m)d f du/2w. (b) Equation for the noise correlation function
D(k,w).

represents the vertex

We further notice that, as observed in Ref. [12], the in-
variance of Eq. (1) under the “Galilean” transformation,

x“—>x"——}»ﬁt , h—h+h, (8)

implies that the coupling constant A does not renormal-

ize. The remaining parameters up to second order in A
transform according to

szVL ’
el__
R=y, |1+ 4,281 ] :
€
9
=Dy, y>—2,
o€l
DR=Dq |1+ N> LI, y=-2,
where
D2 d-1)72
;LZ=_.LB_ dx -
i (M I
Sq—1 d 2 1
Ay= -
‘ ar )"fo LT 2)2[ 1+p?
Na= (21r)df l+p2)3 '
From Eq. (9), one can determine the renormalization

group (RG) equations by rescaling k, k,—k
with the following definitions for the exponents:

=k”e1,

=ket, o'=we?, h'(K,0')=h(kwle ™. (10

The roughening exponent x,h'(x’,t')=h(x,t)e X, is
then y=w—z—(d —1)§—1.
In the case y > —2, the RG equations are

(7—d) A;1'/? under the condition y <3, or y >3, d <7.
Notice that as long as the canonical dimensions of the
field h increase with y, ([#],=(2—d +y)/2), one is al-
lowed to consider, among all the nonlinear terms compa-
tible with Galilean invariance, the single term ha”h, pro-
vided only that the inequality [Adh],=1+y—d <0
holds. Taking into account that A and v, do not renor-
malize to all orders and, furthermore, that if y > —2, D,
also does not renormalize, and one easily concludes that
the exponents Y, z, { can be determined exactly. As a re-
sult, from Eq. (11) one has

1—d +2y
7—d
6—2y
12
T—d (12)
=2
g 2 *

In (12), the last relation implies normal diffusion in the
transverse directions (x,~t%/?). One also verifies the
scaling relation y+z—1=0. As previously observed,
this is the condition under which the nonlinear term of
Eq. (1) allows for scale-invariant solutions; in the case of
rough (y>0) surfaces, it implies a transport faster than
ballistic: x" ~t!/%, z <1. The energy spectrum scales as
H(k)~k;®*V; in particular, the Kolmogorov ex-
ponent —% is recovered if y=(d+2)/3, so that z=2
§{=x=1 independent of the dimension dj in this case, the
field has Gaussian fluctuations in time (h =~tX/?=¢!/2),
With conservative noise (y = —2), the last two equations
in (11) become

WD —p (D3z+(d = 1)E+y +1=20+ D]
¢ (13)
%D_=%x(1>{s+gxz(n[1vd—(7—d)Ad]} -

Here, if d >2, one has the trivial fixed point A*=0 with
exponents y=—d /2, z=2, {=1. In the region d <2,
one finds instead a fixed point A*=(32me)!”? with
x=1—d, z=d, {=d/2; this corresponds, in d =1, to
ballistic diffusion (y=0, z=1). Finally, when y < —2,
one notices that the leading contribution to the noise
correlation still goes as kﬁ, so that the same behavior as
that for y = —2 is expected. For consistency, we checked
the results obtained in the limit d — 1 by directly renor-
malizing the d =1 Burgers equation. If y > —2, we ob-
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tain consistent results, but for y < —2 the trivial fixed
point is unstable, a sign of the failure of the perturbative
approach.

Let us summarize the main results. One finds a posi-
tive roughening exponent )Y under the condition
(d—1)/2<y <min(3,d —1), (0<y<1), the diffusion
here being faster than ballistic (z <1); the Kolmogorov
regime is found in this range under the condition d > 3.
The case y =3 corresponds to Y =1, the threshold above
which the surface is unstable. The exponent Y is negative
if y <min[(d —1)/2,3]. It is interesting to notice that in
this case the behavior is always superdiffusive (1 <z <2).
We add some comments on the time dependence of the
output current J(¢) [2] through the edge of the system
x,=L,. Inthe infrared limit, one has

J()=(A/2) [d? % hHxp,x1) ,
where
(J(J(0) =L¢t[axy+(d —1)¢)/z (14)

where L, is the transverse size of the system. From (14),
one obtains the frequency spectrum S;(f):

S;(f) . fdte (J(t)J(O))~f¢J y @y Pl
(15)

Similarly, the spectrum of the dissipated energy
E()=(A/2) [d?xh?(x,1) is

2+y
pa

SE(f)z—‘:;_ N ¢E= (16)
f E

These estimates for ¢; and ¢ are correct, provided that
J(t) and E (t) have correlators decaying in time [14].

CONCLUSIONS

In this paper, we examined the scaling in transport
processes described by the driven-diffusion equation. We
focused on the consistency of the DRG results with the
steady state solution of the deterministic problem. This
solution, describing a scale independent energy flux in the
transport direction, is proper for the strong coupling re-
gime and gives a positive roughening exponent. Surpris-
ingly enough, it is unstable upon addition of §-correlated
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noise, or at least this is the conclusion of DRG analysis
(notice that in this case, the DRG result for the ex-
ponents is correct to all orders of the perturbation
theory). Only by assuming a power-correlated noise does
one recover the Kolmogorov solution or more generally
have a positive roughening; the result is always explicitly
dependent on the noise [see Eq. (12)]. The naive scaling
of the equation is consistent with the exponents (12), but
fails when y < —2. A direct numerical analysis of the
one-dimensional 1D driven-diffusion equation with §-
correlated noise [15] has been recently performed, obtain-
ing full agreement with the DRG results of Hwa and
Kardar. We expect that the exact exponents obtained
here should also be confirmed. Interestingly enough, the
DRG results from the Kardar-Parisi-Zhang equation
with spatial correlations have been recovered in simula-
tions of correlated surface growth [16].

Scaling behavior is found in sandpile cellular automata,
where the height or the slope of the sandpile, defined over
the lattice, propagates according to given dynamical rules
when it exceeds a threshold value. Particles are added to
randomly chosen sites and leave the system from a given
boundary. It has been shown [7,17] that a class of this
automata can be described in the hydrodynamic limit by
a singular diffusion equation,

%—‘f=v-[D(S)VS] , D(S)=S"*,

with boundary conditions consistent with the excitation
mechanism. The exponent ¢ is model dependent and
determines, together with the dimension d and the exci-
tation, the scaling of S with the system size S~L ~%.
One gets the relation z=2—pB¢, the counterpart of
X +z=1 from the driven-diffusion equation, and is tempt-
ed to make a connection between the two. In the case of
the two-state model (d =1, $=3, B=1), upon identifying
S with the slope of h, [S]=[0A /dx ], one indeed obtains
the correct numbers z=1, y=1, but this seems a mere
coincidence, as it is not confirmed in other cases.
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